通过人类活动(例如在线购买,健康记录,空间流动性等)生成的大量数据可以在连续时间内表示为一系列事件。在这些连续的时间事件序列上学习深度学习模型是一项非平凡的任务,因为它涉及建模不断增加的事件时间戳,活动间时间差距,事件类型以及不同序列内部和跨不同序列之间的不同事件之间的影响。近年来,对标记的时间点过程(MTPP)的神经增强功能已成为一种强大的框架,以模拟连续时间内定位的异步事件的基本生成机制。但是,MTPP框架中的大多数现有模型和推理方法仅考虑完整的观察方案,即所建模的事件序列是完全观察到的,没有丢失的事件 - 理想的设置很少适用于现实世界应用程序。最近考虑的事件的最新工作是在培训MTPP时采用监督的学习技术,这些技术需要以序列的方式了解每个事件的丢失或观察标签,这进一步限制了其实用性,因为在几种情况下,缺失事件的细节是不知道的apriori 。在这项工作中,我们提供了一种新颖的无监督模型和推理方法,用于在存在事件序列的情况下学习MTPP。具体而言,我们首先使用两个MTPP模拟观察到的事件和缺失事件的生成过程,其中缺少事件表示为潜在的随机变量。然后,我们设计了一种无监督的训练方法,该方法通过变异推断共同学习MTPP。这样的公式可以有效地将丢失的数据归为观察到的事件,并可以在序列中确定缺失事件的最佳位置。
translated by 谷歌翻译
由于在过去几年中兴趣的增长,基于梯度的政策控制方法也得到了控制问题的普及。并且正确地,由于梯度策略方法具有以端到端的方式优化利息度量的优点,并且在没有完全了解底层系统的情况下相对容易实现。在本文中,我们研究了基于梯度的策略优化方法的全局融合,用于离散时间和无模型的Markovian跳转线性系统(MJLS)的二次控制。我们超越了由于多个州而产生的宗教挑战,并通过缺乏系统动态缺乏了解,并使用梯度下降和自然政策梯度方法显示全球策略融合。我们还提供模拟研究来证实我们的索赔。
translated by 谷歌翻译
在几个真实的世界应用中,部署机器学习模型以使数据对分布逐渐变化的数据进行预测,导致火车和测试分布之间的漂移。这些模型通常会定期在新数据上重新培训,因此他们需要概括到未来的数据。在这种情况下,有很多关于提高时间概括的事先工作,例如,过去数据的连续运输,内核平滑时间敏感参数,最近,越来越多的时间不变的功能。但是,这些方法共享了几个限制,例如可扩展性差,培训不稳定,以及未来未标记数据的依赖性。响应上述限制,我们提出了一种简单的方法,该方法以时间敏感的参数开头,但使用梯度插值(GI)丢失来规则地规则化其时间复杂度。 GI允许决策边界沿着时间改变,并且仍然可以通过允许特定于时间的改变来防止对有限训练时间快照的过度接种。我们将我们的方法与多个实际数据集的现有基线进行比较,这表明GI一方面优于更加复杂的生成和对抗方法,另一方面更简单地梯度正则化方法。
translated by 谷歌翻译
多条证据表明预测模型可能受益于算法分类。在算法分类下,预测模型不会预测所有情况,而是将其中一些人迁移到人类专家。然而,在算法分类下模型的预测准确性与人类专家之间的相互作用并不充分理解。在这项工作中,我们首先正式表征在这种情况下,在这种情况下,预测模型可能受益于算法分类。在这样做时,我们还证明了用于完整自动化培训的模型可能是在分类下的次优。然后,给定任何模型和所需的分类级别,我们示出了最佳分类策略是确定性阈值规则,其中通过在每个实例级别上的模型和人为错误之间的差异来确定分类决策。建立这些结果,我们介绍了一种实用的基于梯度的算法,保证找到一系列分类策略和提高性能的预测模型。来自两个重要应用的合成和实际数据的各种监督学习任务的实验 - 内容调度和科学发现 - 说明了我们的理论结果,并表明我们的梯度基算法提供的模型和分类策略优于所提供的算法几个竞争的基线。
translated by 谷歌翻译
Advances in computer vision and machine learning techniques have led to significant development in 2D and 3D human pose estimation from RGB cameras, LiDAR, and radars. However, human pose estimation from images is adversely affected by occlusion and lighting, which are common in many scenarios of interest. Radar and LiDAR technologies, on the other hand, need specialized hardware that is expensive and power-intensive. Furthermore, placing these sensors in non-public areas raises significant privacy concerns. To address these limitations, recent research has explored the use of WiFi antennas (1D sensors) for body segmentation and key-point body detection. This paper further expands on the use of the WiFi signal in combination with deep learning architectures, commonly used in computer vision, to estimate dense human pose correspondence. We developed a deep neural network that maps the phase and amplitude of WiFi signals to UV coordinates within 24 human regions. The results of the study reveal that our model can estimate the dense pose of multiple subjects, with comparable performance to image-based approaches, by utilizing WiFi signals as the only input. This paves the way for low-cost, broadly accessible, and privacy-preserving algorithms for human sensing.
translated by 谷歌翻译
Due to the environmental impacts caused by the construction industry, repurposing existing buildings and making them more energy-efficient has become a high-priority issue. However, a legitimate concern of land developers is associated with the buildings' state of conservation. For that reason, infrared thermography has been used as a powerful tool to characterize these buildings' state of conservation by detecting pathologies, such as cracks and humidity. Thermal cameras detect the radiation emitted by any material and translate it into temperature-color-coded images. Abnormal temperature changes may indicate the presence of pathologies, however, reading thermal images might not be quite simple. This research project aims to combine infrared thermography and machine learning (ML) to help stakeholders determine the viability of reusing existing buildings by identifying their pathologies and defects more efficiently and accurately. In this particular phase of this research project, we've used an image classification machine learning model of Convolutional Neural Networks (DCNN) to differentiate three levels of cracks in one particular building. The model's accuracy was compared between the MSX and thermal images acquired from two distinct thermal cameras and fused images (formed through multisource information) to test the influence of the input data and network on the detection results.
translated by 谷歌翻译
The advances in Artificial Intelligence are creating new opportunities to improve lives of people around the world, from business to healthcare, from lifestyle to education. For example, some systems profile the users using their demographic and behavioral characteristics to make certain domain-specific predictions. Often, such predictions impact the life of the user directly or indirectly (e.g., loan disbursement, determining insurance coverage, shortlisting applications, etc.). As a result, the concerns over such AI-enabled systems are also increasing. To address these concerns, such systems are mandated to be responsible i.e., transparent, fair, and explainable to developers and end-users. In this paper, we present ComplAI, a unique framework to enable, observe, analyze and quantify explainability, robustness, performance, fairness, and model behavior in drift scenarios, and to provide a single Trust Factor that evaluates different supervised Machine Learning models not just from their ability to make correct predictions but from overall responsibility perspective. The framework helps users to (a) connect their models and enable explanations, (b) assess and visualize different aspects of the model, such as robustness, drift susceptibility, and fairness, and (c) compare different models (from different model families or obtained through different hyperparameter settings) from an overall perspective thereby facilitating actionable recourse for improvement of the models. It is model agnostic and works with different supervised machine learning scenarios (i.e., Binary Classification, Multi-class Classification, and Regression) and frameworks. It can be seamlessly integrated with any ML life-cycle framework. Thus, this already deployed framework aims to unify critical aspects of Responsible AI systems for regulating the development process of such real systems.
translated by 谷歌翻译
Model calibration, which is concerned with how frequently the model predicts correctly, not only plays a vital part in statistical model design, but also has substantial practical applications, such as optimal decision-making in the real world. However, it has been discovered that modern deep neural networks are generally poorly calibrated due to the overestimation (or underestimation) of predictive confidence, which is closely related to overfitting. In this paper, we propose Annealing Double-Head, a simple-to-implement but highly effective architecture for calibrating the DNN during training. To be precise, we construct an additional calibration head-a shallow neural network that typically has one latent layer-on top of the last latent layer in the normal model to map the logits to the aligned confidence. Furthermore, a simple Annealing technique that dynamically scales the logits by calibration head in training procedure is developed to improve its performance. Under both the in-distribution and distributional shift circumstances, we exhaustively evaluate our Annealing Double-Head architecture on multiple pairs of contemporary DNN architectures and vision and speech datasets. We demonstrate that our method achieves state-of-the-art model calibration performance without post-processing while simultaneously providing comparable predictive accuracy in comparison to other recently proposed calibration methods on a range of learning tasks.
translated by 谷歌翻译
Dataset scaling, also known as normalization, is an essential preprocessing step in a machine learning pipeline. It is aimed at adjusting attributes scales in a way that they all vary within the same range. This transformation is known to improve the performance of classification models, but there are several scaling techniques to choose from, and this choice is not generally done carefully. In this paper, we execute a broad experiment comparing the impact of 5 scaling techniques on the performances of 20 classification algorithms among monolithic and ensemble models, applying them to 82 publicly available datasets with varying imbalance ratios. Results show that the choice of scaling technique matters for classification performance, and the performance difference between the best and the worst scaling technique is relevant and statistically significant in most cases. They also indicate that choosing an inadequate technique can be more detrimental to classification performance than not scaling the data at all. We also show how the performance variation of an ensemble model, considering different scaling techniques, tends to be dictated by that of its base model. Finally, we discuss the relationship between a model's sensitivity to the choice of scaling technique and its performance and provide insights into its applicability on different model deployment scenarios. Full results and source code for the experiments in this paper are available in a GitHub repository.\footnote{https://github.com/amorimlb/scaling\_matters}
translated by 谷歌翻译
Over the past decade, neural networks have been successful at making predictions from biological sequences, especially in the context of regulatory genomics. As in other fields of deep learning, tools have been devised to extract features such as sequence motifs that can explain the predictions made by a trained network. Here we intend to go beyond explainable machine learning and introduce SEISM, a selective inference procedure to test the association between these extracted features and the predicted phenotype. In particular, we discuss how training a one-layer convolutional network is formally equivalent to selecting motifs maximizing some association score. We adapt existing sampling-based selective inference procedures by quantizing this selection over an infinite set to a large but finite grid. Finally, we show that sampling under a specific choice of parameters is sufficient to characterize the composite null hypothesis typically used for selective inference-a result that goes well beyond our particular framework. We illustrate the behavior of our method in terms of calibration, power and speed and discuss its power/speed trade-off with a simpler data-split strategy. SEISM paves the way to an easier analysis of neural networks used in regulatory genomics, and to more powerful methods for genome wide association studies (GWAS).
translated by 谷歌翻译